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The Bohr-Mottelson model of nuclear rotations and vibrations is a 
cornerstone of nuclear structure physics (Bohr et al., 1976). The model 
regards the nucleus as a liquid drop deformed into an ellipsoid which 
rotates and incompressibly vibrates, thereby giving rise to rotational bands 
and strong electric quadrupole transitions. By experiment, one can de- 
termine the shape from the intrinsic quadrupole moments and measure the 
nuclear moment of inertia from the energy levels. The success of this model 
stems not only from its generally favorable agreement with experiment, but 
also from the transparent geometrical view it provides of the nucleus. 

Nevertheless, the Bohr-Mottelson model has inherent limitations. In 
order to explain detailed nuclear properties it is obvious that we need to 
incorporate noncollective features of the nucleus, e.g., shell structure, into 
our model. But, how can we relate the liquid drop picture to the microscopic 
view of the nucleus as an interacting system of neutrons and protons? At the 
1970 Solvay Conference, Professor Wigner emphasized the importance of 
answering this question for nuclear structure physics (Wigner, 1970). We 
need to be able to pose and solve nuclear structure problems with as much 
precision and detail as is necessary, but not at the expense of obscuring the 
fundamental geometrical properties of the nucleus. 

The resolution of this dilemma involves ideas from geometric quantiza- 
tion and dynamical groups which have parallels with the relativistic free 
particle. As we shall see, the absence of a theory of interacting relativistic 
particles does not allow us to pursue the correspondence to its ultimate 
conclusion. However, we will succeed in embedding the liquid drop model 
into the existing theory of interacting nonrelativistic neutrons and protons, 
thereby resolving the Solvay question. 
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GEOMETRIC QUANTIZATION 

Geometric quantization has achieved significant progress toward a 
clear understanding of the relationship between classical and quantum 
mechanics (Kostant, 1970; Souriau, 1970). The theory formulates a defini- 
tion of quantization suitable for arbitrary symplectic manifolds by identify- 
ing the intrinsic geometric objects involved in ordinary Dirac quantization. 
Furthermore, there is a classification theorem for the symplectic manifolds 
on which a Lie group acts transitively and canonically in terms of the 
group's co-adjoint orbits. 

These ideas coalesce in a striking application to the relativistic free 
particle. One defines a classical model for a free particle as a symplectic 
manifold on which there is a transitive action of the PoincarO, group by 
canonical transformations. Since these phase spaces are naturally given as 
co-adjoint orbits of the Poincard group, all the possible classical models for 
a free relativistic particle are determined. It is found that there is a phase 
space for every possible mass and also for every possible spin! This is in 
contrast to the conventional models given by the cotangent bundles of 
orbits of the Lorentz group in Minkowski energy-momentum space (mass 
hyperboloids), which describe only spinless particles. 

Curiously, this general classification principle was first employed in its 
quantum setting. In a landmark study, Wigner (1939) characterized the 
quantum state space of a free particle as a Hilbert space which carries an 
irreducible unitary representation of the Poincar6 group. Using the inducing 
construction, all possible quantum mechanical state spaces are enumerated. 
Representations with arbitrary mass and half-integral spin are obtained. Of 
course, ordinary Dirac quantization of the mass hyperboloids omits the 
nonzero spin possibilities. 

The general relationship between the classical symplectic spaces and 
the quantum Hilbert spaces is that the quantum irreducible representations 
are given by quantization of the classical co-adjoint orbits. This quantiza- 
tion is the Kostant-Souriau constructiofi suitable for arbitrary symplectic 
manifolds meeting the generalized Bohr-Sommerfeld quantization condi- 
tions. 

With this overview of the relativistic free particle in mind, let us survey 
the parallels with the liquid drop model. 

CLASSICAL COLLECTIVE MODELS 

In the liquid drop model, the classical configuration space is an orbit of 
the special linear group SL(3) in the space Q of three-by-three, real 
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symmetric positive-definite matrices (Rosensteel and Rowe, 1979). This 
parallels the orbits of the Lorentz group in Minkowski energy-momentum 
space. A point q of Q is physically identified with the mass quadrupole-  
monopole moment of a classical fluid, q,i = fo(-x ),x,xld .~, where 0 is the 
density distribution of the fluid. The action of SL(3) on Q is inherited from 
its natural action on three-dimensional Euclidean space, q-- ,g .q . 'g ,  for 
g ~ SL(3). The constraint to an orbit of the volume-preserving transforma- 
tions insures the incompressibility of the fluid. Each orbit in Q space 
corresponds to a different nuclear volume. The cotangent bundles to these 
orbits are the phase spaces of a liquid drop. 

However, in order to characterize all possible collective models we need 
a Lie group for the liquid drop which parallels the Poincar6 group. The 
group is known as CM(3), which stands for collective motion in three 
dimensions. It is a semidirect product of SL(3) with the six-dimensional 
abelian normal subgroup generated by the translations in Q space. 

A classical collective model is defined now to be a symplectic manifold 
with a transitive action of CM(3) by canonical transformations (Rosensteel 
and lhrig, 1979: Guillemin and Sternberg, 1980). These models are ex- 
hausted by the co-adjoint orbits of CM(3). The orbits are indexed by two 
real parameters (?~,v), where ?~3 = d e t q  measures the volume and v de- 
termines the total vortex momentum. The singular orbits with vanishing 
vortex momentum (irrotational flow) are just the cotangent bundles of 
orbits of SL(3) in Q space. However, to the author's knowledge the nonzero 
vortex generic orbits are new classical models for incompressible fluids. 

QUANTUM COLLECTIVE MODELS 

Just as Wigner characterized the quantum state space for a free particle 
in terms of the irreducible representations of the Poincar6 group, we define 
a quantum collective model as an irreducible representation of CM(3) 
(Rosensteel and Rowe, 1976; Weaver, Cusson and Biedenharn, 1976). Since 
CM(3) is a semidirect product with an abelian normal subgroup just like the 
Poincar6 group, its irreducible unitary representations are all given via the 
inducing construction. 

The irreducible unitary representations of CM(3) are indexed by two 
parameters (~.,L), where again ~.3= detq measures the volume and k is an 
integer with L(L+ 1) the total vortex momentum. The representations with 
vanishing vortex momentum are the spaces of the Bohr-Mottelson irrota- 
tional flow model. However, the nonzero vortex spin representations repre- 
sent new quantum fluid models. 
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What is the relationship between the classical and quantum collective 
models? For the vortex free models, the quantum space is given by ordinary 
Dirac quantization of the classical configuration space, viz. an orbit of 
SL(3) in Q space. This quantization was carried out by A. Bohr (1952). 
However, for the models with nonvanishing vortex momentum, we must 
be careful. Only the co-adjoint orbits of CM(3) which satisfy the (Niels) 
Bohr-Sommerfeld quantization condition can be quantized. The allowed 
co-adjoint orbits have 2~u integral. This should be compared to the 
restriction to half-integral spin orbits for the Poincar~ group, which Souriau 
found necessary for the quantization of the free particle. After applying the 
Kostant-Souriau quantization construction to the co-adjoint orbit (?~,v) 
with 2~'u integral, we obtain the irreducible unitary representation (h, L) of 
CM(3), where L = 2~rv. Hence, every quantum collective model arises from 
the quantization of some classical model. 

INTERACTING SYSTEMS 

So far, the correspondence between the relativistic free particle and the 
quantum liquid drop has been remarkable. For each theoretical concept 
relevant to the relativistic free particle, an analogous idea applies to the 
liquid drop. However, we can carry out the theory of a liquid drop one step 
further, which, although desirable, has no analog for the free particle. The 
quantum collective models can be naturally embedded in the complete 
interacting theory of A protons and neutrons. But, since we do not know 
what the theory of interacting relativistic particles is, no such embedding is 
possible for free particles. 

The Hilbert space of the quantum nuclear A particle system is the 
exterior product of A copies of the single-particle space. The group CM(3) 
acts reducibly on this Hilbert space. In the reduction into irreducible 
representations, it is found that every irreducible representation of CM(3) 
occurs with countably infinite multiplicity. Hence, every quantum model 
of a liquid drop, including the nonvanishing vortex momentum rep- 
resentations, can occur in nature. An irreducible representation is seen 
experimentally if the observed quantum states are selected from a single 
irreducible representation. This favorable selection will only occur if the 
irreducible subspace is invariant with respect to the exact nuclear Hamilto- 
nian. 

We would like to be able to carry out a similar analysis for the Poincare 
group, but, of course, we need to know what the action of the Poincar6 
group is on the interacting relativistic particle space. We would then reduce 
the representation of the Poincar~ group on the interacting Hilbert space 
into its irreducible components. Professor Dirac in his talk conjectured that 
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the action of  the Poincar6 group on the interacting space is not  reducible 
and indeed we should be looking for such pathological representations (in 
Mackey 's  classification scheme, these are type-I l l  representations). It re- 
mains to be seen what can be done here. 

The classical collective models are realized on A particle phase space 
R 6'4 by employing the moment  map, which naturally maps R 6"4 into the 
dual space of  the Lie algebra of  CM(3). The group CM(3) acts as canonical  
t ransformat ions  on R 6A. The moment  map intertwines the group action on 
R 64 and the co-adjoint  action on the dual space. Hence, an orbit of  CM(3) 
in R 6A is mapped  by the momen t  map onto a co-adjoint  orbit. 

Apparent ly,  this achieves a decomposi t ion of R 6A into collective sub- 
manifolds. However,  there is a difficulty. In general, the orbits of CM(3) in 
R 6"4 are not symplectic manifolds. This is reflected in the fact that the 
restriction of  the moment  map to an orbit of  CM(3) in R ~''~ in not a 
one- to-one map onto  its corresponding co-adjoint  orbit. Since the moment  
map is not injective, it does not necessarily follow that the integral curves of  
a Hamil tonian vector field, even though lying entirely in an orbit, will factor 
through the moment  map. Further  work is needed on quotient ing out 
integrals via the moment  map. 
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